Dynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory

Authors

  • Kia Dastani Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • Mahdi Moghimi Zand Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • Reza Javidi Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Abstract:

In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation of solution, a simply supported beam-plate under a moving force is considered and compared with existing results in the literature. The effects of nonlinearity, mass ratios, different geometric parameters, orbiting radius and angular velocity on dynamic response of plate are studied. This study present the importance of nonlinear analysis of rectangular plate under orbiting mass due to large deformation. In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation of solution, a simply supported beam-plate under a moving force is considered and compared with existing results in the literature. The effects of nonlinearity, mass ratios, different geometric parameters, orbiting radius and angular velocity on dynamic response of plate are studied. This study present the importance of nonlinear analysis of rectangular plate under orbiting mass due to large deformation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Free Vibrations Analysis of Functionally Graded Rectangular Nano-plates based on Nonlocal Exponential Shear Deformation Theory

In the present study the free vibration analysis of the functionally graded rectangular nanoplates is investigated. The nonlocal elasticity theory based on the exponential shear deformation theory has been used to obtain the natural frequencies of the nanoplate. In exponential shear deformation theory an exponential functions are used in terms of thickness coordinate to include the effect of tr...

full text

nonlinear bending analysis of thick functionally graded plates based on third-order shear deformation plate theory

in this paper the nonlinear bending analysis of thick functionally graded plates subjected to mechanical loading is studied. the formulation is derived based on the third-order shear deformation plate theory and von kármán type non-linearity. young’s modulus is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. the principle of virtual wo...

full text

Static analysis of rectangular nanoplates using exponential shear deformation theory based on strain gradient elasticity theory

In this research, the bending analysis of rectangular nanoplates subjected to mechanical loading is investigated. For this purpose, the strain gradient elasticity theory with one gradient parameter is presented to study the nanoplates. From the best knowledge of authors, it is the first time that the exponential shear deformation formulation based on strain gradient elasticity theory is carried...

full text

Free Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories

In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...

full text

Dynamic Buckling of Embedded Laminated Nanocomposite Plates Based on Sinusoidal Shear Deformation Theory

In this study, the dynamic buckling of the embedded laminated nanocomposite plates is investigated. The plates are reinforced with the single-walled carbon nanotubes (SWCNTs), and the Mori-Tanaka model is applied to obtain the equivalent material properties of them. Based on the sinusoidal shear deformation theory (SSDT), the motion equations are derived using the energy method and Hamilton's p...

full text

Nonlocal Bending Analysis of Bilayer Annular/Circular Nano Plates Based on First Order Shear Deformation Theory

In this paper, nonlinear bending analysis of bilayer orthotropic annular/circular graphene sheets is studied based on the nonlocal elasticity theory. The equilibrium equations are derived in terms of generalized displacements and rotations considering the first-order Shear deformation theory (FSDT). The nonlinear governing equations are solved using the differential quadrature method (DQM) whic...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 49  issue 1

pages  27- 36

publication date 2018-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023